## Farinomalein, a Maleimide-Bearing Compound from the Entomopathogenic Fungus *Paecilomyces farinosus*

Sastia P. Putri,<sup>†</sup> Hiroshi Kinoshita,<sup>†</sup> Fumio Ihara,<sup>‡</sup> Yasuhiro Igarashi,<sup>§</sup> and Takuya Nihira<sup>\*,†,⊥</sup>

International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, National Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan, Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, and MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand

Received May 8, 2009

A new maleimide-bearing compound, farinomalein (1), was isolated from the entomopathogenic fungus *Paecilomyces farinosus* HF599. The structure was determined on the basis of spectroscopic analyses and chemical conversion. Compound 1 showed potent activity (5  $\mu$ g/disk) against the plant pathogenic *Phytophthora sojae* P6497.

Entomopathogenic fungi are well known for their ability to produce various bioactive compounds during infection and proliferation in insects<sup>1-3</sup> and, thus, are considered as potential sources of novel bioactive compounds.<sup>4-6</sup> Those belonging to the genus Paecilomyces have been the source of a wide range of bioactive metabolites, including the antimalarial and antitumor cyclohexadepsipeptide paecilodepsipeptide A from P. cinnamomeus,<sup>7</sup> an antibiotic containing a tetramic acid moiety (paecilosetin from P. farinosus<sup>8</sup>), and neuritogenic pyridine alkaloids (farinosones A-C and militarinones A-D from P. farinosus and P. militaris, respectively<sup>9,10</sup>). During screening for an antioomycete compound against plant pathogenic oomycetes, the EtOAc extract of P. farinosus HF599 showed strong inhibitory activity against Phytophthora sojae.<sup>11</sup> Detailed investigation of the fungal extract led to the identification of the new maleimide compound 3-(3-isopropyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)propanoic acid, which we have named farinomalein (1). Farinomalein (1) showed potent inhibition of the plant pathogen Phytophthora sojae, with an MIC value of 5  $\mu$ g/disk, whereas the MIC of the antifungal agent amphotericin B is 10  $\mu$ g/disk. We herein describe the isolation, structure elucidation, and biological activity of farinomalein (1).

The producing strain was isolated from a lepidopteran larval cadaver collected on Mt. Tsukuba, Ibaraki, Japan. This fungus was identified as *Paecilomyces farinosus* on the basis of morphological criteria. Compound **1**, the major metabolite of *P. farinosus* HF599, was not detected in the extract of another active isolate of *P. farinosus*, HF656 (data not shown).



Farinomalein (1) was obtained as a white powder. Highresolution ESITOFMS revealed an  $[M + Na]^+$  at m/z 234.0710, corresponding to the molecular formula  $C_{10}H_{13}NO_4$  (calcd for  $C_{10}H_{13}NO_4Na$ , 234.0737). The <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data (Table 1) were in agreement with the assigned molecular formula. The <sup>13</sup>C NMR spectrum of **1** showed 10 signals, indicating five aliphatic carbons (one of them bonded to nitrogen), two carbons in the olefinic region, and two carbonyl carbons. The <sup>1</sup>H NMR spectrum in combination with the HSQC spectrum revealed proton signals for two methyl, two methylene, an aliphatic methine, and an olefinic methine group. The COSY spectrum demonstrated two fragments: H-6-H-5-H-7 and H-8-H-9 (Figure 1). HMBC correlations from H-3 to C-1, C-2, and C-4 and from H-5 to C-1, C-2, and C-3 established the maleimide core and the substitution of an isopropyl group at C-2. Furthermore, the HMBC correlation from H-8 to C-1 and C-4 suggested bonding of C-8 to the maleimide nitrogen. HMBC correlations from H-8 and H-9 to C-10, in consideration of the molecular formula, led to the suggestion of the presence of a carboxylic acid at the terminus. The location of the nitrogen was confirmed by the observation of <sup>1</sup>H-<sup>15</sup>N longrange couplings between the protons H-3, H-8, and H-9 and the nitrogen ( $\delta$  147.1). For verification of the presence of carboxylic acid, 1 was treated with MeI and DBU to afford a methylated derivative (2). In the <sup>1</sup>H NMR of 2, a singlet methyl was observed at  $\delta$  3.64, and it showed HMBC correlation to C-10, thereby confirming the location of carboxylic acid. The UV absorption at 223 nm is typical for a maleimide ring.<sup>12</sup> High-resolution ES-ITOFMS of 2 revealed an  $[M + Na]^+$  at m/z 248.0910 corresponding to the molecular formula C<sub>11</sub>H<sub>15</sub>NO<sub>4</sub> (calcd for C<sub>11</sub>H<sub>15</sub>NO<sub>4</sub>Na, 248.0893). The IR spectrum was consistent with the presence of the symmetric (1778  $\text{cm}^{-1}$ ) and asymmetric (1717  $\text{cm}^{-1}$ ) maleimide C=O stretches and the maleimide symmetric C-N-C stretch  $(\sim 1405 \text{ cm}^{-1})$ ,<sup>13</sup> as well as the presence of OH (3113 cm<sup>-1</sup>) and carbonyl (1702 cm<sup>-1</sup>) groups, thereby confirming the structure of 1 as indicated.

Reports of natural compounds bearing maleimide rings are very limited. Examples include showdomycin from *Streptomyces show*-*doensis*, pencolide from *Penicillium multicolor*, and turrapubesin from the twigs and leaves of *Turraea pubescens*.<sup>14–16</sup> The isopropyl moiety attached at C-2 on the maleimide ring is, to our best knowledge, a unique structural feature that has not been reported previously in natural compounds.

Recently, maleimides such as *N*-methylmaleimide, *N*-ethylmaleimide, and phenylmaleimide PM-20 have attracted the interest of many researchers due to their cytotoxicity toward tumor cell lines through the inhibition of human topoisomerase II<sup>17</sup> or the inhibition of Cdc25A.<sup>18</sup> These facts suggested that, in addition to its potent antioomycete activity, farinomalein (1) could also possess other biological functions, such as cytotoxicity toward tumor cell lines.

## **Experimental Section**

General Experimental Procedures. UV spectra were recorded on a Hitachi U-3210 spectrophotometer. IR spectra were recorded on a

10.1021/np9002806 CCC: \$40.75 © 2009 American Chemical Society and American Society of Pharmacognosy Published on Web 08/11/2009

<sup>\*</sup> To whom correspondence should be addressed. Tel: +81-6-6879-7452. Fax: +81-6-6879-7454. E-mail: nihira@icb.osaka-u.ac.jp.

<sup>&</sup>lt;sup>†</sup> Osaka University.

<sup>\*</sup> National Institute of Fruit Tree Science.

<sup>§</sup> Toyama Prefectural University.

<sup>&</sup>lt;sup>⊥</sup> Mahidol University.

Table 1. NMR Spectroscopic Data for Farinomalein (1) and Its Methyl Ester (2) in CD<sub>3</sub>OD

|          | farinomalein (1)                                                              |                           |                    | farinomalein-Me (2) |                    |            |
|----------|-------------------------------------------------------------------------------|---------------------------|--------------------|---------------------|--------------------|------------|
| position | $\delta_{\mathrm{H}} \; (\mathrm{mult}, J \; \mathrm{in} \; \mathrm{Hz})^{b}$ | $\delta_{	ext{C}}{}^{c}$  | HMBC <sup>b</sup>  | $\delta_{ m H}$     | $\delta_{ m C}$    | HMBC       |
| 1        |                                                                               | 172.6 <sup>a</sup>        |                    |                     | 170.8 <sup>a</sup> |            |
| 2        |                                                                               | 157.3                     |                    |                     | 156.0              |            |
| 3        | 6.37 (d, 1.6)                                                                 | 126.0                     | 1, 2, 4, 5, 6, (7) | 6.37 (d, 1.6)       | 126.0              |            |
| 4        |                                                                               | 172.3 <sup><i>a</i></sup> |                    |                     | 170.8 <sup>a</sup> |            |
| 5        | 2.80 (dh, 1.6, 6.9)                                                           | 27.2                      | 1, 2, 3, 6, (7)    | 2.80 (dh, 1.6, 6.9) | 27.2               |            |
| 6, 7     | 1.21 (d, 6.9)                                                                 | 21.3                      | 2, 5, 6, 7         | 1.21 (d, 6.9)       | 21.3               | 2, 5, 6, 7 |
| 8        | 3.74 (t, 7.2)                                                                 | 34.9                      | 1, 4, 9, 10        | 3.75 (t, 7.0)       | 34.9               | 1, 9       |
| 9        | 2.58 (t, 7.2)                                                                 | 34.0                      | 8, 10              | 2.60 (t, 7.0)       | 34.0               | 8,10       |
| 10       |                                                                               | 175.0                     |                    |                     | 172.0              |            |
| 11       |                                                                               |                           |                    | 3.64 (s)            | 52.5               | 10         |

<sup>a</sup> Exchangeable. <sup>b</sup> Recorded at 500 MHz. <sup>c</sup> Recorded at 100 MHz.



Figure 1. COSY, HMBC, and <sup>15</sup>N HMBC correlations of 1.

Perkin-Elmer Spectrum 100 spectrophotometer. NMR spectra were obtained on a Bruker AV400 M or on a Bruker AVANCE 500 spectrometer. The <sup>1</sup>H and <sup>13</sup>C chemical shifts were referenced to the solvent signals ( $\delta_{\rm H}$  3.3 and  $\delta_{\rm C}$  49.1 in CD<sub>3</sub>OD). The <sup>15</sup>N chemical shift was referenced to the external signal of formamide. HRESITOFMS were recorded on a Bruker microTOF focus spectrometer. HPLC analyses were carried out on an Agilent HP1100 system using a Cosmosil 5C18-AR-II column (4.6 × 100 mm; Nacalai Tesque Inc.). The solvent used to dissolve **1** was methanol unless stated otherwise.

**Microorganism.** The entomopathogenic fungus *Paecilomyces farinosus* HF599 was isolated from a Lepidopteran larval cadaver collected on Mt. Tsukuba, Ibaraki, Japan. Fungal conidia that developed on the surface of the dead larva were transferred to SMY and incubated at 25 °C for several days.<sup>20</sup> After the conidia had developed on SMY slants, the strain was kept at -30 °C as a stock culture. The isolated strain was identified as *P. farinosus* according to its morphology by one of the authors (F.I.). The fungus is deposited at the culture collection of National Institute of Fruit Tree Science.

**Fermentation.** All chemicals, media, and reagents were purchased from Wako, Japan, unless stated otherwise. The seed culture was prepared as follows. The mycelium of *P. farinosus* HF599 grown on a slant culture was inoculated into 100 mL flasks each containing 30 mL of the seed medium, SMY [maltose 4%, yeast extract 1%, peptone 1%], and cultivated at 25 °C for 3 days. The seed culture (5 mL) was transferred into 500 mL baffled flasks containing 250 mL of the production medium [SMY supplemented with Diaion HP-20 (Mitsubishi Chemical Co., Japan) 1%], which were cultured at 25 °C for 21 days under static conditions.

**Extraction and Isolation.** The mixture of 21-day-old mycelium and fermentation broth of strain HF599 (250 mL × 8 flasks) was extracted with ethyl acetate (without prior saturation with water, 250 mL per flask) by stirring for 1 h. The mixture was separated by filtration using Miracloth (Calbiochem, San Diego, CA), and the filtrate was again extracted with 1 L of ethyl acetate. The organic layer was separated from the aqueous layer in an extraction funnel and dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>. Evaporation of the solvent provided approximately 1 g of extract per 2 L of culture. A portion of the crude extract (500 mg) was subjected to reversed-phase column chromatography using a Sep-Pak Vac 35 cm<sup>3</sup> (10 g) C<sub>18</sub> cartridge (Waters, Millford, MA) with a step gradient of CH<sub>3</sub>CN-H<sub>2</sub>O (0:1, 1:9, 2:8, and 1:0 v/v). Final purification was conducted by reversed-phase HPLC on a Shiseido Capcell-Pak C<sub>18</sub> column (5  $\mu$ m; 250 × 10 mm i.d.) with 20% CH<sub>3</sub>CN + 0.1% TFA to yield **1** (45.6 mg/g extract).

**Farinomalein (1):** white powder; UV (MeOH)  $\lambda_{max}$  (log  $\varepsilon$ ) 223 (4.27), 288 (2.26); IR 3113, 1778, 1717, 1702, 1405; <sup>1</sup>H, <sup>13</sup>C NMR, HMBC, see Table 1; HRESITOFMS m/z [M + Na]<sup>+</sup> 234.0710 (calcd for C<sub>10</sub>H<sub>13</sub>NO<sub>4</sub> Na 234.0737).

**Methylation of Farinomalein (1).** A solution of **1** (500  $\mu$ g), methyl iodide (few drops), and 1,8-diazabicyclo[5.4.0]-7-undecene (trace amount) in acetone (50  $\mu$ L) and CH<sub>3</sub>CN (50  $\mu$ L) was heated at 50 °C

for 1 h in darkness. The reaction mixture was diluted with water and extracted with EtOAc. The organic layer was successively washed with diluted aqueous HCl and brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The organic layer was concentrated *in vacuo* to obtain methyl ester **2**. The obtained residue (200  $\mu$ g) containing the methyl ester as the major constituent (>90% purity as shown by HPLC) was directly used for analysis.

**Methyl Ester of Farinomalein (2):** <sup>1</sup>H, <sup>13</sup>C NMR, <sup>22</sup> HMBC, see Table 1; HRESITOFMS m/z [M + Na]<sup>+</sup> 248.0910 (calcd for C<sub>11</sub>H<sub>15</sub>NO<sub>4</sub>Na, 248.0893).

Antioomycete Assay. In vitro antioomycete activity was determined by the disk diffusion susceptibility test following the method described previously<sup>21</sup> with several modifications. Loaded paper disks (1, 5, 10, 50, 100  $\mu$ g/disk) (8.0 mm; Advantec, Japan) were air-dried on a clean bench for 30 min prior to placing on the Petri dish. The minimal inhibitory concentration was defined as the lowest concentration resulting in inhibition of mycelial growth after 48–96 h of incubation at 25 °C. The indicator strain, *P. sojae* P6497, was grown at 25 °C on V8-juice agar [Vvegetable juice without NaCl (COOP, Japan) 20% v/v, CaCO<sub>3</sub> 0.2%, agar 1.8%]. The reference compound used in this assay, amphotericin B, was dissolved in DMSO. No growth inhibition was observed in the control disks (loaded with 50  $\mu$ L of MeOH or DMSO).

Acknowledgment. We thank Dr. Y. Sakihama of Hokkaido University for providing the *Phytophthora sojae* P6497 and Ms. M. Azumi and Mr. T. Fukuda for technical assistance during the NMR and mass spectrometric analyses. This study was supported in part by a scholarship from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan to S.P. and by a grant for a "Research Project in the Field of Biotechnology" from MEXT, the National Research Council of Thailand, and the National Science and Technology Development Agency of Thailand to T.N.

**Supporting Information Available:** <sup>1</sup>H NMR, <sup>13</sup>C NMR, and HMBC spectra of farinomalein (1) and <sup>1</sup>H NMR, HSQC, and HMBC spectra of its methyl ester (2). This information is available free of charge via the Internet at http://pubs.acs.org.

## **References and Notes**

- Jan Scholte, E.; Knols, B. G.; Samson, R. A.; Takken, W. J. Insect Sci. 2004, 4, 1–24.
- (2) Thomas, M.; Read, A. Nat. Rev. Microbiol. 2007, 5, 377-383.
- (3) Zimmermann, G. Biocontrol Sci. Technol. 2007, 17, 553–596.
- (4) Azumi, M.; Ishidoh, K.; Kinoshita, H.; Nihira, T.; Ihara, F.; Fujita, T.; Igarashi, Y. J. Nat. Prod. 2008, 71, 278–280.
- (5) Lee, S. Y.; Kinoshita, H.; Ihara, F.; Igarashi, Y.; Nihira, T. J. Biosci. Bioeng. 2008, 105, 476–480.
- (6) Isaka, M.; Kittakoop, P.; Kirtikara, K.; Hywel-Jones, N. L.; Thebtaranoth, Y. Acc. Chem. Res. 2005, 38, 813–823.
- (7) Isaka, M.; Palasarn, S.; Lapanun, S.; Sriklung, K. J. Nat. Prod. 2007, 70, 675–678.
- (8) Lang, G.; Blunt, J. W.; Cummings, N. J.; Cole, A. L.; Munro, M. H. J. Nat. Prod. 2005, 68, 810–811.
- (9) Cheng, Y.; Schneider, B.; Riese, U.; Schubert, B.; Li, Z.; Hamburger, M. J. Nat. Prod. 2004, 67, 1854–1858.
- (10) Schmidt, K.; Gunther, W.; Stoyanova, S.; Schubert, B.; Li, Z. Org. Lett. 2002, 89, 197–199.
- (11) Putri, S. P.; Kinoshita, H.; Kitani, S.; Ihara, F.; Igarashi, Y.; Nihira, T. Mycologia, submitted.

- (12) Hargreaves, M.; Pritchard, J.; Dave, H. Chem. Rev. 1970, 70, 439–469.
- (13) Shen, G.; Anand, M. F.; Levicky, R. Nucleic Acids Res. 2004, 32, 5973–5980.
- (14) Nakagawa, Y.; Kano, H.; Tsukuda, Y.; Koyama, H. *Tetrahedron Lett.* 1967, 42, 4105–4109.
- (15) Birkinshaw, J.; Kalyanpur, M.; Stickings, C. Biochem. J. 1963, 86, 237–243.
- (16) Wang, X.; Yin, S.; Fan, C.; Wang, F.; Lin, L.; Ding, J.; Yue, J. Org. Lett. 2006, 8, 3845–3848.
- (17) Jensen, L. H.; Renodon-Corniere, A.; Wessel, I.; Langer, S. W.; Sokilde, B.; Carstensen, E. V. Mol. Pharmacol. 2002, 61, 1235– 1243.
- (18) Filho, V.; Pinheiro, T.; Nunes, R.; Yunes, R.; Bella Cruz, A.; Moretto, A. *Farmaco* **1994**, *49*, 675–677.
- (19) Kar, S.; Wang, M.; Yao, W.; Michejda, C. J.; Carr, B. I. *Mol. Cancer Ther.* 2006, *5*, 1511–1519.
- (20) Ihara, F.; Yaginuma, K.; Kobayashi, N.; Mishiro, K.; Sato, T. Appl. Entomol. Zool. 2001, 38, 495–500.
- (21) Deora, A.; Hashidoko, Y.; Islam, M.; Tahara, S. *Eur. J. Plant Pathol.* **2005**, *112*, 311–322.
- (22) Due to the limited amount of the sample, <sup>13</sup>C signals were not fully detected and the chemical shifts were determined indirectly by analyzing HSQC and HMBC spectra.

NP9002806